On a singularly perturbed semi-linear problem with Robin boundary conditions

نویسندگان

چکیده

This paper is concerned with a semi-linear elliptic problem Robin boundary condition: style='text-indent:20px;'> \begin{document}$ \begin{equation} \left\{\begin{array}{lll} \varepsilon \Delta w-\lambda w^{1+\chi} = 0, &\text{in} \ \Omega\\ \nabla w \cdot \vec{n}+\gamma & \text{on} \partial \Omega \end{array}\right. \end{equation} ~~~~~~~~~~~~~~~~~~~~(*)$\end{document} style='text-indent:20px;'>where \begin{document}$ \subset {\mathbb R}^N (N\geq 1) $\end{document} bounded domain smooth boundary, id="M2">\begin{document}$ \vec{n} denotes the unit outward normal vector of id="M3">\begin{document}$ and id="M4">\begin{document}$ \gamma \in R}/\{0\} $\end{document}. id="M5">\begin{document}$ id="M6">\begin{document}$ \lambda are positive constants. The (*) derived from well-known singular Keller-Segel system. When id="M7">\begin{document}$ \gamma>0 $\end{document}, we show there only trivial solution id="M8">\begin{document}$ 0 id="M9">\begin{document}$ \gamma<0 id="M10">\begin{document}$ B_R(0) ball, that has non-constant which converges to zero uniformly as id="M11">\begin{document}$ tends zero. main idea this transform nonlocal Dirichelt by Cole-Hopf type transformation then use shooting method obtain existence transformed Dirichlet problem. With results for (*), get stationary solutions original

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasilinear singularly perturbed problem with boundary perturbation.

A class of quasilinear singularly perturbed problems with boundary perturbation is considered. Under suitable conditions, using theory of differential inequalities we studied the asymptotic behavior of the solution for the boundary value problem.

متن کامل

High-order Time-accurate Schemes for Singularly Perturbed Parabolic Convection-diffusion Problems with Robin Boundary Conditions

The boundary-value problem for a singularly perturbed parabolic PDE with convection is considered on an interval in the case of the singularly perturbed Robin boundary condition; the highest space derivatives in the equation and in the boundary condition are multiplied by the perturbation parameter ε. In contrast to the Dirichlet boundary-value problem, for the problem under consideration the e...

متن کامل

A method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers

In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...

متن کامل

A Boundary Value Problem for a Singularly Perturbed Differential Equation

has a solution «=g(x) for O^x^Xo with g(0)=a and u = h(x) tor xo^x^l with h(l)=b where g(x0)=h(x0). It will be assumed that g'(xo)*h'(xo). The case of (1) with f=l — (y')t and where \a — b\ <1 can be treated explicitly. For small e>0 the solution of (1) tends to the broken line solution of (2) with g(x)=a — x and h = b — 1+x and Xo = (l+a—b)/2. (There is another broken line solution of (2) with...

متن کامل

A hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer

The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems-series B

سال: 2021

ISSN: ['1531-3492', '1553-524X']

DOI: https://doi.org/10.3934/dcdsb.2020083